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Energy Requirements in Quantum Communication

Lev B. Levitin1
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It is shown that the minimum energy required to transmit a natural unit of
information (nat) over a noisy channel is kT, where T is the effective noise
temperature, which depends on the interaction between the information carrier
and the environment. The result follows from the entropy defect principle and
general laws of quantum dynamics without any specific assumptions.

1. INTRODUCTION

The problem of the minimum energy required to transmit a unit of

information over a noisy channel has been extensively discussed for many

years (Felker, 1952; Jaynes, 1957; Brillouin, 1956; Bremermann, 1962, 1967a,

b; von Neumann, 1966; see also references in Landauer, 1994). Still, the

problem remains controversial, as stressed in a recent paper by Landauer

(1994), who argues against ª a widespread presumption that it takes kT ln 2
to send a bit from one place to another.º

The problem is, indeed, far from being settled. Most results obtained

are model dependent. General resuts seem to be hard to achieve, and the

difference of opinions arises, as Landauer correctly points out, ª from the

difficulty of the problem, when compared to our ability.º

This paper is an attempt to clarify the situation and to draw some general
conclusions regarding the process of information transmission over a quantum

mechanical communication channel.

First of all, it is clear that, in speaking about kT, we assume that there

is noise, i.e., interaction between the physical system carrying information

and another, uncontrolled physical system. (Of course, by ª systemº we mean
not a physical ª body,º but a set of degrees of freedom, that is, certain dynamic

variables.) Indeed, if we control completely the degrees of freedom that are
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used to carry the information, and there is no interference with other degrees

of freedom that could change the state of the system in an unpredictable way,

it means that the system is isolated and operates at absolute zero: kT 5 0,

and, hence, there is no problem with energy dissipation.

The fact that in the absence of noise the energy required for transmission

of a unit of information can be made arbitrarily small ª if we are willing to

do it slowlyº (Landauer, 1994) has been well known for a long time. In

particular, this was demonstrated in Lebedev and Levitin (1963, 1966) and

Levitin (1965, 1969a, 1983) for various types of boson and fermion channels.

Furthermore , it was shown in Levitin (1970, 1982) that, in principle, we do

not need to slow down the transmission rate to make energy arbitrarily small:

the Bremermann limit (Bremermann, 1962, 1967a, b) I /t # E / " (often quoted

in the 1960s) was proved not to be valid in general, though, of course, for

each given physical system, the value of I /Et is limited (here I denotes

information in nats; t, time; E, energy; and " , Planck’ s constant).

The situation changes in principle if there is interaction between the

controlled and uncontrolled degrees of freedom. As shown in Section 2, the

result of the interaction can be described as the effect of thermal noise

characterized by a certain temperature. This temperature depends, understand-

ably, on the strength of the interaction and does not have to be equal, in

general, to the temperature of the environment . The energy put into the

controlled degrees of freedom must be sufficient to make the signals discern-

ible against the background of noise. This does not mean that all this energy

must be ª lost.º It seems plausible that a part of it can be ª reusedº or converted

into mechanical work, at least in principle. On the other hand, another part

of energy is indeed dissipated. Thus we have to answer two different questions:

1. What is the minimum energy per unit of information that is required

for transmission under noisy conditions?

2. What is the minimum energy per unit of information that inevitably

dissipates as a result of the interaction with uncontrollable degrees

of freedom?

It is important to understand clearly what we mean by energy dissipation.

This question is far from trivial. It touches upon fundamental problems related

to the Second Law of Thermodynamics. Dissipation does not mean ª lossº

or ª disappearanceº of energy. After all, energy is conserved in an isolated

system. What ª dissipationº really means is the increase of entropy of the

system, which reduces the ability of the system to carry information or

produce mechanical work, so that a part of the energy of the system cannot

no longer be used for those purposes.
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2. GENERAL BOUND

The analysis given below is based on the entropy defect principle first

established in Levitin (1969b; (see also Levitin 1993a).

Let X be the input random variable X taking on values xi with probabilities

pi. Suppose that each xi is encoded by a state si of a quantum system A
described by a density matrix r i. Let r be the a priori density matrix of the
entire ensemble of states S 5 {si , pi}:

r 5 o
i

pi r i (1)

Denote by D the entropy defect of the system:

D 5 H 2 H (2)

where

H 5 2 Tr r ln r (3)

and

H 5 2 o
i

pi Tr r i ln r i (4)

Let I be the maximum information about the random variable X obtain-

able by measurements over the random system A. [Some authors call it
ª accessible informationº (Fuchs, 1994; Schumacher et al., 1996).] Then the

following inequalities are valid (Levitin, 1969b, 1993a):

I # D # 2 o
i

pi ln pi 5
D

H(X ) (5)

The left-hand equality holds iff all density matrices r i commute, and

the right-hand equality holds iff all r i are orthogonal.

Now consider the case when the ensemble of signals S 5 {si , pi} is

encoded initially by an ensemble of pure orthogonal states {s 0
i , pi} of system

A, each s 0
i being described by a density matrix r 0

i . This means that we have

complete control over the initial state of the information carrierÐ the system

A. In this case the conditional enthropy is H0 5 0, and the initial information

is given by

I0 5 D0 5 H0 5 H(X ) (6)

In other words, our ª quantum encodingº preserves completely the information

in the ensemble of signals [which is equal to H (X )].

Suppose now that starting with time t 5 0, system A interacts with

another quantum system B (the environment) which is beyond our control.
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Let the initial state of B be described by the density matrix s . Without loss

of generality we assume that A and B together form an isolated system with

Hamiltonian H. Then the time evolution of their joint density matrices
r (A 1 B)

i is given by a unitary transformation:

r (A 1 B)
i (t) 5 exp 1 2 iHt

" 2 r 0
i ^ s exp 1 2 iHt

" 2 (7)

where r 0
i ^ s is the tensor product of initial density matrices of systems A

and B in their joint tensor-product Hilbert space. The factorization of the

joint density matrix at time t 5 0 reflects the independence of the initial
states of systems A and B, which is due to the absence of interaction prior

to time t 5 0. At time t Þ 0 the joint density matrices r (A 1 B)
i (t) cannot be,

in general, factorized. The density matrices r i of the system A at the given

time t are obtained by taking the trace over the variables of system B

r i 5 TrB r (A 1 B)
i (t) (8)

The density matrices r i are, in general, nonorthogonal . Moreover, they repre-
sent, in general, mixed, rather than pure, states. The exceptional cases when

this is not so are equivalent to the absence of interaction, i.e., to the free

time evolution of system A with an appropriate Hamiltonian HA. Therefore,

in general, the conditional entropy is nonzero:

H 5 2 o
i

pi Tr r i ln r i Þ 0 (9)

and the initial information is partially lost:

I # H 2 H , H(X ) (10)

Here r and H are defined by (1) and (3), respectively.

The fact that the conditional entropy (which is the average entropy of

the ensemble of states {si , pi}, si being represented by r i) has increased

reflects the irreversibility of the process. The ensemble of states S 5 {si , pi}

now carries less information about X than prior to the interaction with system

B and cannot be ª reusedº to encode as much information as the initial
ensemble S0 5 {s (0)

i , pi}.

Consider now the situation in terms of energy. The initial energy of the

ensemble of states is

E0 5 o
i

piE
(0)
i 5 o

i
pi Tr r (0)

i HA 5 Tr r (0)HA (11)



Energy Requirements in Quantum Communication 491

The final energy is

E 5 Tr r HA (12)

Denote by E (T 8) the energy of the system in the state of thermal equilib-

rium at temperature T 8. The increase of the average entropy H means that a

part of energy has been transformed into heat in the system, or transferred

to the system in the form of heat. How large is this part? It is equal to the

energy E (T ) of the system in the state of thermal equilibrium at temperature

T, where T is determined by the value of entropy increase

H 5 H(T ) 5 #
T

0

1

kT8

dE(T 8)

dT8
dT 8 (13)

Thus, T has the meaning of the effective noise temperature. The noise tempera-

ture depends on the interaction between system A and the environment and

is not equal, in general, to the temperature of the environment (if the latter
is at thermal equilibrium).

Note that E (T 8) is the minimum possible energy of the system in a state

with given entropy H (T 8). It follows that the final energy E of the system

obeys the inequality

E $ E(T1) (14)

where T1 is determined as the temperature of the system in the thermal

equilibrium state with entropy H 5 2 Tr r ln r ,

H 5 H(T1 ) 5 #
T1

0

1

kT8

dE(T 8)

dT8
dT 8 (15)

E 2 E (T ) is the excess of the total energy of the system over the thermal
equilibrium level that makes the ensemble of states capable of carrying

information. Here we assume that interaction with the environment does not

include amplification of the signal. Indeed, any amplification process

increases both the energy of the signal and the noise temperature, so that the

information in the signal (as well as the signal-to-noise ratio) does not increase

(Helstrom, 1976). Therefore, following the approach used in communication
engineering, we relate both signal and noise to the ª input of the ampli-

fier.º Then

E0 $ E 2 E(T ) (16)
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Hence, for the initial energy of the system per unit of information transmitted,

we obtain

E0

I
$

E 2 E(T )

H 2 H
$

E(T1) 2 E (T )

#
T1

T

1

kT8

dE(T 8)

dT8
dT8

(17)

5
E(T1) 2 E (T )

1

kT* #
T1

T

dE(T 8)

dT8
dT8

5 kT*

where

T # T* # T1 (18)

Thus, the following theorem has been proved:

Theorem 1. The minimum energy e per unit of information required to

transmit information over a channel with effective noise temperature T satis-

fies the inequality

% 5
E0

I
$ kT (19)

Inequality (19) establishes a general lower bound for the minimum

energy per unit of information (nat). It follows from the laws of quantum

dynamics without any specific assumptions. Note that expression (19)

approaches equality iff E0/kT ® 0 (the signal-to-noise ratio is small).
In the limiting case when E 5 E (T ) the information is completely lost:

H 2 H 5 0, all density matrices r i become identical, and the ensemble of

states cannot be used for information transmission or for producing mechani-

cal work. [More precisely, if all r i are identical, the process is impossible

whose sole result would be converting heat taken from a thermostat into

mechanical work, without changing the total energy of our system and without
any other changes in the universe. Such a process is always possible, in

principle, if r i are not indentical; cf. Levitin (1993b).]

It is more difficult to give a general answer to the second question

stated in Section 1 concerning the dissipation of signal energy, because the

information carrier, i.e., system A, is not isolated from the unobservable

system B, the environment. Therefore, there is no way to identify clearly
which part of heat production and heat transfer is due to system A or to

system B. However, the change of the entropy of the environment as the

result of the interaction with the signal is limited. In particular, if the initial

state of the environment was pure, its final entropy is HB 5 H. Therefore,
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if the environment is very large compared to system A (i.e., has many more

degrees of freedom), then the part of its energy corresponding to the change

of entropy is very small compared to E (T ). Thus, there is a good reason to
consider E (T ) as a measure of energy dissipation resulting from the interaction

of information carrier with the environment. One can see that the ratio E (T )/I
can be larger or smaller than kT, depending on the concrete model. Let us

emphasize once again that we do not consider here possible changes of

entropy resulting from the fact of measurement (except for the inequality

I # D).
Then, what is the origin of the ª widespread presumptionº that kT is the

minimum energy to be dissipated per one nat of information? Von Neumann’ s

(1966), reasoning as well as that of many other authors, is based on the

assumption that all the energy dissipates in the process of measurement

performed after each act of information transmission. This assumption is

quite realistic and, indeed, takes place in many practical situations. Then,
inequality (19) applies, where T means the temperature of the environment.
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